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One of the features of liquid crystalline polymers (LCPs) is their strong elastic anisotropy,
which means they have unequal elastic constants. Elastic anisotropy plays a crucial role in
the microstructure and macroscopic properties of LCPs. In this paper, the eŒect of unequal
elastic constants on microstructure is investigated without an external � eld by using a
deterministic tensorial approach. In this model, the evolution of the director � eld can be
viewed as a process driven towards the state of zero elastic torque. A tensor expression of the
elastic torque is used so that the nematic symmetry is automatically conserved. In simulations
of bulk samples, disclination lines of strength half and escaped integer disclinations are
observed. The distortion � elds around the disclinations are found to depend on elastic
anisotropy. If the twist constant is the lowest, as is the case for main chain liquid crystalline
polymers, the disclination lines are predominantly of the twist type.

1. Introduction gating the microstructures by quenching the samples
Spatial inhomogeneity of the director � eld n plays into a glassy phase [6–8]. Elastic anisotropy for a

an important role in a highly textured nematic liquid thermotropic copolyester was determined by measuring
crystalline polymer (LCP). The distortion of the director the distortion around a wedge disclination decorated by
can be described by the Frank elastic free energy, which lamellar structure [9]. However, in a recent study, it
has three components: splay, twist and bend, with was found that this method was undermined by neigh-
respective elastic constants [1]. Compared with small bouring disclination interactions, and should be applied
molecular weight liquid crystals (SMWLCs), LCPs have only to a completely isolated disclination [10]. There-
strong elastic anisotropy [2], i.e. the three elastic con- fore, a systematic measurement of the elastic constants
stants have signi� cantly diŒerent values. For example, for LCPs is still a challenge. The study of the in� uence
for main chain thermotropic LCPs, the splay elastic of elastic anisotropy on the microstructure is mostly
constant is considerably greater than the bend and twist con� ned to a theoretical � eld [11–12]. It is believed
elastic constants, since the concentration of the chain that elastic anisotropy has considerable in� uence on the
ends is low [3, 4]. microstructure and macroscopic properties of LCPs

For SMWLCs, the three elastic constants can be
[1, 2]. The single-constant assumption is not appropriate

determined by the Fréedericksz transitions [1] or a light
for long chain liquid crystalline systems.

scattering technique [5]. Unfortunately, the measure-
In numerical simulations, most previous treatments

ment methods of the three elastic constants for SMWLCs
assumed equal constants to simplify the calculation. The

are not applicable to LCPs since uniformly oriented
exceptions were some recent Monte Carlo based simu-

specimens of LCPs are hardly ever obtained. On the
lations for tackling the unequal elastic constants issue

other hand, for SMWLCs, the observation of the micro-
[13–16]. In these models, an LCP was represented bystructures corresponding to the various optical textures
a set of directors n on a spatially � xed cubic lattice. Theis di� cult to handle because the specimens are in the
relaxation algorithms were designed to minimize theliquid state. For LCPs, the long relaxation time due to
total free energy of the system. To calculate the freethe long chain structure provides a possibility of investi-
energy of a cell, the vectorial and tensorial forms of the

Frank free energy were used, respectively. In [14],
*Author for correspondence; e-mail: ahw1@cus.cam.ac.uk

the nematic symmetry, which means that n and Õ n are†Present address: Accelrys Ltd., The Quorum, Cambridge
CB5 8RE, UK. equivalent, was treated by a � ip vectorial scheme.
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326 H. Tu et al.

In a previous paper [17], we presented a deterministic following form [17]:
model dealing with the three Frank elastic constants.
According to this model, the evolution of the directors h

b
5 2n

aGk2Dn
a
n
b
1 (k1 Õ k2 )

could be considered as � nding the state in which the
directors were parallel to the ‘texture � eld’, instead of

3 C =
ac

n
c
n
b
1 =

bc
n
c
n
a
Õ

2
3

d
ab

=
cl

n
c
n
lD� nding the minimum of the elastic free energy. The

elastic eŒect of the textures was taken into account by
using a tensor expression of the elastic torque, in which

1 (k3 Õ k1 )C=
c
(n

c
n
l

=
l
n
a
n
b
) Õ

1
2

=
a
n
c
n
l

=
b
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n
lthe three elastic constants were included and nematic

symmetry was conserved automatically. The simulation
results of the Fréedericksz transitions were in perfect

1
1

6
d
ab

=
c
n
l
n
m

=
c
n
l
n
mDH (3)agreement with the analytical solutions [17].

In the current paper, this model is used for simulations
whereof the disclination structure for a range of elastic aniso-

tropies both in 2D and 3D. A brief description of the
=

ab
5

q2

qx
a
qx

b

.governing equations and numerical model is given in
§ 2; details can be found in [17]. In § 3 and § 4, the

In the equilibrium state, the director n must be, at eachsimulation results of the annealing of defects in a planar
point, parallel to the ‘texture � eld’.and a bulk sample, respectively, are given. Finally, § 5

Equations (2) and (3) describe the relaxation behavioursummarizes this investigation.
of the director � eld. For a given initial pattern and
boundary conditions, equation (2) can be integrated

2. Numerical model numerically by standard techniques.
The Frank elastic free energy can be written in the The nematic is represented by a set of directors on a

following tensorial form [13] spatially � xed cubic lattice. A normal � nite diŒerence
scheme is adopted for discretizing equation (2) on this
lattice. Starting from the given director pattern andf 5

1
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m boundary conditions, the evolution of the director in

each cell can be described by the following equation
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where n is the director, n ¯ n 5 1 and n is equivalent to
Here Dt is the time step, b 5 1, 2, 3. nold

b
and nnew

b
are theÕ n; k1 , k2 and k3 are the three Frank elastic constants

directors at the previous time step and the current timewhich are associated with the three types of deformations,
step, respectively. hold

b
can be calculated by discretizingsplay, twist and bend, respectively.

equation (3).Equation (1) is equivalent to the vectorial form of
the Frank elastic free energy except for the surface

3. Director annealing in thin � lmsterms [12]. The Greek subscripts refer to the Cartesian
If the directors are constrained to lie in a plane, as iscomponents, and

the case in thin � lms, distortions are restricted to bend
and splay, i.e. the twist distortion is forbidden. Therefore

=
a
5

q
qx

a

, r 5 (x1 , x2 , x3 ) 5 (x, y, z). distortions in two dimensions are of pure wedge character
[1]; these correspond to the Schlieren texture in a thin
nematic specimen observed by polarizing optical micro-The summation convention is used.
scopy. The 2D version of the model [17] can hence beThe equation of motion for director relaxation has
used to simulate the structures of wedge disclinationsthe following form,
and the eŒect of splay and bend elastic anisotropy on
them.qn

qt
5

1
c1

(n 3 h) 3 n (2) Starting from an isotropic phase, the annealing pro-
cedure can be described as follows. Randomly oriented
directors tend to form half strength defect pairs. At thewhere n 3 h is the torque per unit volume due to the

curvature elasticity, and c1 is the rotational viscous beginning of annealing, a large number of defects with
half strength are generated. The number of 1 1/2 defectscoe� cient. The ‘texture � eld’, h, which emanates from

spatial director inhomogeneity, is found to take the is always equal to the number of Õ 1/2 defects, as the
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327T ensor model of L C polymers

analytic result predicted [1, 2]. Defect pairs of opposite current deterministic model, the system is driven towards
a state of zero elastic torque. Sometimes a mono-domainstrength tend to attract each other and � nally annihilate,

in order to reduce the elastic torque. This leads to con� guration is reached, corresponding to the global
minimum free energy state. However, it is also possiblethe decrease of the defect density corresponding to the

texture coarsening observed in experiments [18]. In the that a state of zero torque is reached with some defect

(a) (b)

(c) (d)

Figure 1. One 1 2 strength disclination splits into four 1 1/2 strength disclinations; (a) 1 2 defect; (b) k1 5 k3 ; (c) 10k1 5 k3 ;
(d ) k1 5 10k3 . Small � lled boxes represent the disclination cores.
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328 H. Tu et al.

pairs remaining, which corresponds to a local free energy As shown in the previous paper [17], the distortion
around 1 1/2 defects depended on elastic anisotropy,minimum. If desired, one can introduce a small magni-

tude � uctuation to the director � eld to unlock the ‘locked while the distortion around Õ 1/2 defects seemed
insensitive to elastic anisotropy. In the following weup’ state and reach the mono-domain con� guration

eventually. investigate the splitting of high strength defects.

(a) (b)

(c) (d)

Figure 2. Boundary eŒects, starting from a pattern randomly oriented and with � xed boundary conditions: (a) initial pattern and
boundary constrains; (b) k1 5 k3 ; (c) 10k1 5 k3 ; (d) k1 5 10k3 . Small � lled boxes represent the disclination cores.
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329T ensor model of L C polymers

According to the theory, the elastic free energy of the strength disclinations of opposite sign left in the � eld.
Again, the � nal shapes of the defects are dependent ondefects is proportional to the square of their strengths.

This makes higher strength disclinations unstable as they elastic anisotropy.
have high elastic free energy. A defect of strength half
has the lowest free energy, so every high strength defect 4. Disclinations in bulk samples

As mentioned above, the defects generated in 2D aremust ultimately dissociate into half strength singularities.
Starting from high strength disclinations, several half wedge-type disclinations of strength half only. However,

the most common defects in bulk samples are disclinationstrength disclinations can be found at the end of the
simulation. Assender and Windle [19] found a diŒer- lines and loops with a combination of splay, bend and

twist distortions in 3D space. These are important forence in the ability to split Ô 1 disclinations to Ô 1/2
disclinations when diŒerent free energy forms were used, the processing of the LCPs. Whereas it is di� cult to

reveal the microstructures of line disclinations using thein the case of the equal constants, so the energy function
form used was signi� cant for the simulation. With � xed present experimental techniques, the 3D simulation

enables us to probe these complex problems.boundary conditions, we � nd that one s 5 1 2 defect
splits into four 1 1/2 defects in their equilibrium state, Disclination lines in the bulk can be described in

terms of the angle (a) between the disclination line vectoras shown in � gure 1. In [19], only in the case of the
sine-squared relation did the split half defects move L and the rotation vector V, about which the director

is seen to rotate. The two limiting cases are referred toapart from each other, leading this expression of the free
energy to be the most successful. In the case of equal as pure wedge and pure twist disclinations, for a 5 0 and

90ß , respectively.constants, the current model gives a similar director
pattern to that in the case of the sine-squared expression We use the topological probes developed previously

[14] to identify disclination lines of strength half. In[19], i.e. the split half defects move apart and reach
their equilibrium state. Furthermore, � gure 1 shows that this way, not only the locations of the cores are found,

but also the disclination character is distinguished viathe shapes of the separated 1 1/2 disclinations depend
on elastic anisotropy. the angle a between the disclination line and the rotation

vector. The following colour coding is used: if a is lessBoundary conditions were found dramatically to aŒect
the � nal con� guration of the director � eld [19]. If we than 30 ß , which implies a predominant wedge type, the

colour blue is used; if a is larger than 60 ß , which impliesstart with a randomly oriented director � eld and use
� xed boundary conditions de� ned by a s 5 1 1 defect a predominant twist type, the colour red is used; for the

others, i.e. a is between 30ß and 60ß , which implies awith the core in the centre of the lattice, two 1 1/2
defects remain in the � nal state, which is its minimum mixed type, the colour green is used. The details have

been given by Hobdell and Windle [14].free energy state, as shown in � gure 2. We � nd no half

Figure 3. Disclination lines of strength half at time step 5000 from the simulation performed on a 100 3 50 3 25 lattice with
periodic boundary conditions in the x and z directions, planar boundary conditions in the y direction and k1 5 10k2 5 k3 .
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330 H. Tu et al.

Disclination lines from the simulations are shown in lower twist constant, for example the value of the twist
constant is a tenth of the others, most of the disclination� gures 3–5. The lattice used here is 100 3 50 3 25, planar

boundary conditions are used in the y direction and lines are coloured red as shown in � gure 3. This means
the character of the half strength disclinations is mainlyperiodic boundary conditions are used in the x and

z directions. With periodic boundary conditions, the of the twist type. If the bend constant or the splay con-
stant is smaller than the others to a certain degree, thesample tessellates along the boundaries and the defect

lines emerge periodically to form closed loops. For a red colour is rare, as shown in � gure 4, which indicates

(a)

(b)

Figure 4. Disclination lines of strength half at time step (a) 6000, (b) 3000; from the simulation performed on a 100 3 50 3 25
lattice with periodic boundary conditions in the x and z directions and planar boundary conditions in the y direction.
(a) 10k1 5 k2 5 k3 , (b) k1 5 k2 5 10k3 .
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331T ensor model of L C polymers

Figure 5. Disclination lines of strength half at time step 900 from the simulation performed on a 100 3 50 3 25 lattice with
periodic boundary conditions in the x and z directions, planar boundary conditions in the y direction and with equal elastic
constants.

that the character of the half strength disclinations is Experiments indicate that integer defects exist without
dissociating themselves into half strength defects in themainly of the wedge type. This is consistent with the

theoretical result of Anisimov and Dzyaloshinskii [11] bulk [20]. This has been explained by an escape of the
director in the third dimension, which is energeticallyand the simulation results of the vectorial model [14].

With equal elastic constants, the distribution of the red, favourable compared with a planar structure.
For the sake of simplicity, only disclination lines ofgreen and blue segments of the half strength disclination

lines is roughly even. This implies that the character of strength half are visualized in � gures 3–5. As well as
the half strength disclination lines, escaped 1 1 and Õ 1the half strength disclinations is twist and wedge type

balanced, as shown in � gure 5. A characteristic of main disclinations are found in the snapshot of the director
� elds. The following simulations have been performedchain LCPs is that the splay constant is the highest and

the twist constant the lowest, so one can expect that on a 30 3 30 3 30 lattice, and periodic boundary con-
ditions are used unless otherwise indicated; the time stepdisclination lines are rich in the twist type.

The statistical analysis of the distribution of charac- is Dt 5 0.001. The nail convention is used in the displays
to represent directors pointing out of the page.teristic angles of the disclinations with respect to the

above simulations is given in � gure 6. It shows that the With equal elastic constants, escaped Õ 1 disclinations
are observed in the bulk. As shown in � gure 7, which ismajority of the disclination lines are of twist character

when the twist constant is low, � gure 6 (a); meanwhile a y ± z slice at x 5 2 and time step 400, one escaped Õ 1
disclination and two 1 1/2 disclinations exist in thismost of the disclination lines are of wedge character

when the splay or the bend constant is low, � gures 6 (b) plane. As explained in [14], this re� ects the correct
treatment of splay–splay compensation.and 6 (c). In the case of equal constants, the distribution

of the disclination lines shows no signi� cant variations, If the splay constant is larger than the others, escaped
1 1 disclinations emerge; these avoid splay distortion.� gure 6 (d), but has relatively less wedge character. As

explained by Hobdell and Windle [14], this may re� ect Figure 8 is a y ± z slice at x 5 23 and time step 20 000.
One escaped 1 1 disclination and two Õ 1/2 disclinationsthe following fact: for a given rotation vector V, there

are many more possible orientations for the disclination emerge in this plane. The distortions around the 1 1
disclination are predominantly of the bend and twist type,line to be normal to V than to be parallel to V; con-

sequently the disclination type of twist character might manifesting a swirling into the plane. Hobdell and Windle
[21] calculated the splay, twist and bend componentsbe expected to be the more numerous.
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332 H. Tu et al.

(a)

(b)

(c)

(d)

Figure 6. Distribution of the disclination angle for: (a) the simulation in � gure 3 (k1 5 10k2 5 k3 ), the average angle is 71ß ; (b) the
simulation in � gure 4 (a) (10k1 5 k2 5 k3 ), the average angle is 33 ß ; (c) the simulation in � gure 4 (b) (k1 5 k2 5 10k3 ), the average
angle is 24ß ; (d) the simulation in � gure 5 with equal elastic constants, the average angle is 52 ß .

of the free energy for several types of point defects, 5. Summary
Defect structures and annealing of nematics have beendenoted Noeud, Foyer, Centre, Col-foyer and Col. The

results showed that the splay component of the free simulated using a deterministic tensorial model, starting
from an isotropic phase in which the directors areenergy had a minimum in the Col-foyer range, the typical

con� guration of which has tangential character [21]. randomly oriented. In 2D, wedge type disclinations of
strength half are observed. As expected, the distortionsThis indicates that the energetically favoured structure

is of tangential type when the splay constant is much around 1 1/2 defects depend considerably on elastic
anisotropy.larger than the others. The swirling con� guration of the

1 1 disclination found in the present simulation is in good The distortions of the disclination lines of strength
half in the bulk also depend on the elastic constants.agreement with the results of Hobdell and Windle [21].

If the splay constant is smaller than the others, With a small twist constant, the disclination lines are
predominantly of twist type. In contrast, with a largeescaped 1 1 disclinations of diŒerent con� guration emerge.

Figure 9 is an x ± y slice at z 5 4 and time step 2500. One twist constant, the disclination lines are predominantly
of wedge type. The disclinations of pure wedge type inescaped 1 1 disclination and three Õ 1/2 and one 1 1/2

disclinations exist in this plane. The distortion around 2D can also be viewed as the case of an in� nite twist
constant.the 1 1 disclination is mostly splay and has a radial

shape. According to the result of Hobdell and Windle In the simulation of bulk samples, escaped 1 1 and
Õ 1 disclination lines are found and are accompanied by[21], the twist and bend components of the free energy

are zero for the Noeud type point defect. Therefore, in half strength disclination lines. The integer disclinations,
which emerge frequently in the case of equal constants,the case of a small splay constant, a 1 1 disclination

tends to form a Noeud con� guration to minimize the are Õ 1 disclinations. Escaped 1 1 disclinations have
diŒerent geometries that depend mainly on the elastictwist and bend distortions.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



333T ensor model of L C polymers

Figure 9. Director distribution at z 5 4 plane from the simu-Figure 7. Director distribution at the x 5 2 plane from
the simulation performed on a 30 3 30 3 30 lattice with lation performed on a 30 3 30 3 30 lattice with periodic

boundary conditions and 10k1 5 k2 5 k3 . It shows oneequal elastic constants and periodic boundary conditions.
It shows one escaped Õ 1 disclination and two 1 1/2 escaped 1 1, one 1 1/2 and three Õ 1/2 disclinations

indicated by the � lled small box, the � lled small circledisclinations indicated by the small box and � lled small
circles, respectively. and the un� lled small circles, respectively.

constants. For example, with a small splay constant, the
distortions around escaped 1 1 disclinations are radial
in nature; with a large splay constant, they are tangential
in nature.

For LCPs, which have a high splay constant and a
low twist constant, predominant twist type disclinations
are expected in the bulk. This is proposed to be a typical
feature of main chain LCPs.

The results reported here are in good agreement with
the results of the vectorial model of Hobdell and Windle
[14], in which the � ip vectorial scheme was used. This
con� rms that both the � ip vectorial model and the
current deterministic tensorial model work well in the
absence of an external � eld. The current deterministic
model is well suited for investigation of the eŒect of
shear � ow on the microstructure of nematics in general
and LCPs in particular. The results of such studies are
presented separately [22].

The authors would like to acknowledge support by
an EPSRC grant under its ‘Processing of conventional
structural materials’ programme.

Figure 8. Director distribution at the x 5 23 plane from the
Referencessimulation performed on a 30 3 30 3 30 lattice with periodic
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