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One of the features of liquid crystalline polymers (LCPs) is their strong elastic anisotropy,
which means they have unequal elastic constants. Elastic anisotropy plays a crucial role in
the microstructure and macroscopic properties of LCPs. In this paper, the effect of unequal
elastic constants on microstructure is investigated without an external field by using a
deterministic tensorial approach. In this model, the evolution of the director field can be
viewed as a process driven towards the state of zero elastic torque. A tensor expression of the
elastic torque is used so that the nematic symmetry is automatically conserved. In simulations
of bulk samples, disclination lines of strength half and escaped integer disclinations are
observed. The distortion fields around the disclinations are found to depend on elastic
anisotropy. If the twist constant is the lowest, as is the case for main chain liquid crystalline
polymers, the disclination lines are predominantly of the twist type.

1. Introduction

Spatial inhomogeneity of the director field n plays
an important role in a highly textured nematic liquid
crystalline polymer (LCP). The distortion of the director
can be described by the Frank elastic free energy, which
has three components: splay, twist and bend, with
respective elastic constants [1]. Compared with small
molecular weight liquid crystals (SMWLCs), LCPs have
strong elastic anisotropy [2], i.e. the three elastic con-
stants have significantly different values. For example,
for main chain thermotropic LCPs, the splay elastic
constant is considerably greater than the bend and twist
elastic constants, since the concentration of the chain
ends is low [3,4].

For SMWLCs, the three elastic constants can be
determined by the Fréedericksz transitions [ 1] or a light
scattering technique [5]. Unfortunately, the measure-
ment methods of the three elastic constants for SMWLCs
are not applicable to LCPs since uniformly oriented
specimens of LCPs are hardly ever obtained. On the
other hand, for SMWLCs, the observation of the micro-
structures corresponding to the various optical textures
is difficult to handle because the specimens are in the
liquid state. For LCPs, the long relaxation time due to
the long chain structure provides a possibility of investi-
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gating the microstructures by quenching the samples
into a glassy phase [6—8]. Elastic anisotropy for a
thermotropic copolyester was determined by measuring
the distortion around a wedge disclination decorated by
lamellar structure [9]. However, in a recent study, it
was found that this method was undermined by neigh-
bouring disclination interactions, and should be applied
only to a completely isolated disclination [10]. There-
fore, a systematic measurement of the elastic constants
for LCPs is still a challenge. The study of the influence
of elastic anisotropy on the microstructure is mostly
confined to a theoretical field [11-12]. It is believed
that elastic anisotropy has considerable influence on the
microstructure and macroscopic properties of LCPs
[1, 2]. The single-constant assumption is not appropriate
for long chain liquid crystalline systems.

In numerical simulations, most previous treatments
assumed equal constants to simplify the calculation. The
exceptions were some recent Monte Carlo based simu-
lations for tackling the unequal elastic constants issue
[13-16]. In these models, an LCP was represented by
a set of directors n on a spatially fixed cubic lattice. The
relaxation algorithms were designed to minimize the
total free energy of the system. To calculate the free
energy of a cell, the vectorial and tensorial forms of the
Frank free energy were used, respectively. In [14],
the nematic symmetry, which means that n and —n are
equivalent, was treated by a flip vectorial scheme.
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In a previous paper [ 17], we presented a deterministic
model dealing with the three Frank elastic constants.
According to this model, the evolution of the directors
could be considered as finding the state in which the
directors were parallel to the ‘texture field’, instead of
finding the minimum of the elastic free energy. The
elastic effect of the textures was taken into account by
using a tensor expression of the elastic torque, in which
the three elastic constants were included and nematic
symmetry was conserved automatically. The simulation
results of the Fréedericksz transitions were in perfect
agreement with the analytical solutions [17].

In the current paper, this model is used for simulations
of the disclination structure for a range of elastic aniso-
tropies both in 2D and 3D. A brief description of the
governing equations and numerical model is given in
§2; details can be found in [17]. In §3 and §4, the
simulation results of the annealing of defects in a planar
and a bulk sample, respectively, are given. Finally, §5
summarizes this investigation.

2. Numerical model
The Frank elastic free energy can be written in the
following tensorial form [13]

1|1
f= E[Ekzv,vnunvv,vnunv—k (ky—k2)V,n;n,V non,
1
+ 5(k3 _kl)nunvvun)vnkvvn),nk (1)

where n is the director, n n=1 and n is equivalent to
—n; ky, k, and k5 are the three Frank elastic constants
which are associated with the three types of deformations,
splay, twist and bend, respectively.

Equation (1) is equivalent to the vectorial form of
the Frank elastic free energy except for the surface
terms [ 12]. The Greek subscripts refer to the Cartesian
components, and

V :_9 r:(x19x29x3):(x’y’z)'

The summation convention is used.
The equation of motion for director relaxation has
the following form,
on 1

E—;(nXh)Xn (2)

where n X h is the torque per unit volume due to the
curvature elasticity, and 7y, is the rotational viscous
coefficient. The ‘texture field’, h, which emanates from
spatial director inhomogeneity, is found to take the

following form [17]:

hﬂ :2I’la {sznanﬂ+ (k1 _kz)

2
X I:Vavnynﬂ—k Vy,n,n,— Eéaﬁvﬂ’””’]

1
+ (kS - kl )I:Vy(nyn),vlnan/}) . Vanyn),vﬂnyn)v

2
1
+ géaﬁvynlnuvynlnu (3)
where
62
Vg = .
0x,0Xy

In the equilibrium state, the director n must be, at each
point, parallel to the ‘texture field”.

Equations (2) and (3) describe the relaxation behaviour
of the director field. For a given initial pattern and
boundary conditions, equation (2) can be integrated
numerically by standard techniques.

The nematic is represented by a set of directors on a
spatially fixed cubic lattice. A normal finite difference
scheme is adopted for discretizing equation (2) on this
lattice. Starting from the given director pattern and
boundary conditions, the evolution of the director in
each cell can be described by the following equation

At
n;ew — n;ld + y_(h})}ld _ n;ldhzld I’l;ld ) (4)
1
Here At is the time step, =1, 2, 3. n3'* and n}* are the
directors at the previous time step and the current time
step, .respectively. h3' can be calculated by discretizing
equation (3).

3. Director annealing in thin films

If the directors are constrained to lie in a plane, as is
the case in thin films, distortions are restricted to bend
and splay, i.e. the twist distortion is forbidden. Therefore
distortions in two dimensions are of pure wedge character
[1]; these correspond to the Schlieren texture in a thin
nematic specimen observed by polarizing optical micro-
scopy. The 2D version of the model [17] can hence be
used to simulate the structures of wedge disclinations
and the effect of splay and bend elastic anisotropy on
them.

Starting from an isotropic phase, the annealing pro-
cedure can be described as follows. Randomly oriented
directors tend to form half strength defect pairs. At the
beginning of annealing, a large number of defects with
half strength are generated. The number of + 1/2 defects
is always equal to the number of —1/2 defects, as the
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current deterministic model, the system is driven towards

analytic result predicted [ 1, 2]. Defect pairs of opposite
strength tend to attract each other and finally annihilate,
in order to reduce the elastic torque. This leads to
the decrease of the defect density corresponding to the

a state of zero elastic torque. Sometimes a mono-domain
configuration is reached, corresponding to the global
minimum free energy state. However, it is also possible

that a state of zero torque is reached with some defect

texture coarsening observed in experiments [ 187]. In the
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One + 2 strength disclination splits into four + 1/2 strength disclinations; (@) + 2 defect; (b) k,

()

ks; (c) 10k, =ks;

Figure 1.

10k;. Small filled boxes represent the disclination cores.

d) ky
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pairs remaining, which corresponds to a local free energy
minimum. If desired, one can introduce a small magni-
tude fluctuation to the director field to unlock the ‘locked
up’ state and reach the mono-domain configuration

As shown in the previous paper [17], the distortion
around + 1/2 defects depended on elastic anisotropy,
while the distortion around —1/2 defects seemed
insensitive to elastic anisotropy. In the following we

eventually. investigate the splitting of high strength defects.
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boundary constrains; (b) ki = k3; (c) 10k, =ks; (d) ki = 10k;. Small filled boxes represent the disclination cores.
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According to the theory, the elastic free energy of the
defects is proportional to the square of their strengths.
This makes higher strength disclinations unstable as they
have high elastic free energy. A defect of strength half
has the lowest free energy, so every high strength defect
must ultimately dissociate into half strength singularities.
Starting from high strength disclinations, several half
strength disclinations can be found at the end of the
simulation. Assender and Windle [19] found a differ-
ence in the ability to split +1 disclinations to +1/2
disclinations when different free energy forms were used,
in the case of the equal constants, so the energy function
form used was significant for the simulation. With fixed
boundary conditions, we find that one s =+ 2 defect
splits into four + 1/2 defects in their equilibrium state,
as shown in figure 1. In [19], only in the case of the
sine-squared relation did the split half defects move
apart from each other, leading this expression of the free
energy to be the most successful. In the case of equal
constants, the current model gives a similar director
pattern to that in the case of the sine-squared expression
[19], i.e. the split half defects move apart and reach
their equilibrium state. Furthermore, figure 1 shows that
the shapes of the separated + 1/2 disclinations depend
on elastic anisotropy.

Boundary conditions were found dramatically to affect
the final configuration of the director field [19]. If we
start with a randomly oriented director field and use
fixed boundary conditions defined by a s =+ 1 defect
with the core in the centre of the lattice, two + 1/2
defects remain in the final state, which is its minimum
free energy state, as shown in figure 2. We find no half

strength disclinations of opposite sign left in the field.
Again, the final shapes of the defects are dependent on
elastic anisotropy.

4. Disclinations in bulk samples

As mentioned above, the defects generated in 2D are
wedge-type disclinations of strength half only. However,
the most common defects in bulk samples are disclination
lines and loops with a combination of splay, bend and
twist distortions in 3D space. These are important for
the processing of the LCPs. Whereas it is difficult to
reveal the microstructures of line disclinations using the
present experimental techniques, the 3D simulation
enables us to probe these complex problems.

Disclination lines in the bulk can be described in
terms of the angle («) between the disclination line vector
L and the rotation vector Q, about which the director
is seen to rotate. The two limiting cases are referred to
as pure wedge and pure twist disclinations, for « =0 and
90°, respectively.

We use the topological probes developed previously
[14] to identify disclination lines of strength half. In
this way, not only the locations of the cores are found,
but also the disclination character is distinguished via
the angle o between the disclination line and the rotation
vector. The following colour coding is used: if o is less
than 30°, which implies a predominant wedge type, the
colour blue is used; if « is larger than 60°, which implies
a predominant twist type, the colour red is used; for the
others, i.e. o is between 30° and 60°, which implies a
mixed type, the colour green is used. The details have
been given by Hobdell and Windle [14].

Figure 3. Disclination lines of strength half at time step 5000 from the simulation performed on a 100X 50 X 25 lattice with
periodic boundary conditions in the x and z directions, planar boundary conditions in the y direction and k; = 10k, = k;.
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Disclination lines from the simulations are shown in
figures 3—35. The lattice used here is 100 X 50 X 25, planar
boundary conditions are used in the y direction and
periodic boundary conditions are used in the x and
z directions. With periodic boundary conditions, the
sample tessellates along the boundaries and the defect
lines emerge periodically to form closed loops. For a

lower twist constant, for example the value of the twist
constant is a tenth of the others, most of the disclination
lines are coloured red as shown in figure 3. This means
the character of the half strength disclinations is mainly
of the twist type. If the bend constant or the splay con-
stant is smaller than the others to a certain degree, the
red colour is rare, as shown in figure 4, which indicates

Figure 4. Disclination lines of strength half at time step (a) 6000, (b) 3000; from the simulation performed on a 100X 50 X 25
lattice with periodic boundary conditions in the x and z directions and planar boundary conditions in the y direction.

(a) 10k1 :kz :k3, (b) kl :kz = 10k3
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Figure 5. Disclination lines of strength half at time step 900 from the simulation performed on a 100X 50 X 25 lattice with
periodic boundary conditions in the x and z directions, planar boundary conditions in the y direction and with equal elastic

constants.

that the character of the half strength disclinations is
mainly of the wedge type. This is consistent with the
theoretical result of Anisimov and Dzyaloshinskii [ 11]
and the simulation results of the vectorial model [ 14].
With equal elastic constants, the distribution of the red,
green and blue segments of the half strength disclination
lines is roughly even. This implies that the character of
the half strength disclinations is twist and wedge type
balanced, as shown in figure 5. A characteristic of main
chain LCPs is that the splay constant is the highest and
the twist constant the lowest, so one can expect that
disclination lines are rich in the twist type.

The statistical analysis of the distribution of charac-
teristic angles of the disclinations with respect to the
above simulations is given in figure 6. It shows that the
majority of the disclination lines are of twist character
when the twist constant is low, figure 6 (a); meanwhile
most of the disclination lines are of wedge character
when the splay or the bend constant is low, figures 6 (b)
and 6(c). In the case of equal constants, the distribution
of the disclination lines shows no significant variations,
figure 6(d), but has relatively less wedge character. As
explained by Hobdell and Windle [ 14], this may reflect
the following fact: for a given rotation vector Q, there
are many more possible orientations for the disclination
line to be normal to Q than to be parallel to Q; con-
sequently the disclination type of twist character might
be expected to be the more numerous.

Experiments indicate that integer defects exist without
dissociating themselves into half strength defects in the
bulk [20]. This has been explained by an escape of the
director in the third dimension, which is energetically
favourable compared with a planar structure.

For the sake of simplicity, only disclination lines of
strength half are visualized in figures 3-5. As well as
the half strength disclination lines, escaped + 1 and —1
disclinations are found in the snapshot of the director
fields. The following simulations have been performed
on a 30X 30X 30 lattice, and periodic boundary con-
ditions are used unless otherwise indicated; the time step
is At =0.001. The nail convention is used in the displays
to represent directors pointing out of the page.

With equal elastic constants, escaped — 1 disclinations
are observed in the bulk. As shown in figure 7, which is
a y—z slice at x =2 and time step 400, one escaped — 1
disclination and two -+ 1/2 disclinations exist in this
plane. As explained in [14], this reflects the correct
treatment of splay—splay compensation.

If the splay constant is larger than the others, escaped
+ 1 disclinations emerge; these avoid splay distortion.
Figure 8 is a y—z slice at x =23 and time step 20 000.
One escaped + 1 disclination and two — 1/2 disclinations
emerge in this plane. The distortions around the +1
disclination are predominantly of the bend and twist type,
manifesting a swirling into the plane. Hobdell and Windle
[21] calculated the splay, twist and bend components
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Figure 6. Distribution of the disclination angle for: (a) the simulation in figure 3 (k; = 10k, = k3), the average angle is 71°; (b) the
simulation in figure 4 (a) (10k, =k, =k;), the average angle is 33°; (c) the simulation in figure 4 (b) (k; =k, = 10ks), the average
angle is 24°; (d) the simulation in figure 5 with equal elastic constants, the average angle is 52°.

of the free energy for several types of point defects,
denoted Noeud, Foyer, Centre, Col-foyer and Col. The
results showed that the splay component of the free
energy had a minimum in the Col-foyer range, the typical
configuration of which has tangential character [21].
This indicates that the energetically favoured structure
is of tangential type when the splay constant is much
larger than the others. The swirling configuration of the
+ 1 disclination found in the present simulation is in good
agreement with the results of Hobdell and Windle [21].

If the splay constant is smaller than the others,
escaped + 1 disclinations of different configuration emerge.
Figure 9 is an x—y slice at z =4 and time step 2500. One
escaped + 1 disclination and three —1/2 and one + 1/2
disclinations exist in this plane. The distortion around
the + 1 disclination is mostly splay and has a radial
shape. According to the result of Hobdell and Windle
[21], the twist and bend components of the free energy
are zero for the Noeud type point defect. Therefore, in
the case of a small splay constant, a + 1 disclination
tends to form a Noeud configuration to minimize the
twist and bend distortions.

5. Summary

Defect structures and annealing of nematics have been
simulated using a deterministic tensorial model, starting
from an isotropic phase in which the directors are
randomly oriented. In 2D, wedge type disclinations of
strength half are observed. As expected, the distortions
around + 1/2 defects depend considerably on elastic
anisotropy.

The distortions of the disclination lines of strength
half in the bulk also depend on the elastic constants.
With a small twist constant, the disclination lines are
predominantly of twist type. In contrast, with a large
twist constant, the disclination lines are predominantly
of wedge type. The disclinations of pure wedge type in
2D can also be viewed as the case of an infinite twist
constant.

In the simulation of bulk samples, escaped + 1 and
—1 disclination lines are found and are accompanied by
half strength disclination lines. The integer disclinations,
which emerge frequently in the case of equal constants,
are — 1 disclinations. Escaped + 1 disclinations have
different geometries that depend mainly on the elastic
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Figure 7. Director distribution at the x=2 plane from
the simulation performed on a 30 X 30 X 30 lattice with
equal elastic constants and periodic boundary conditions.
It shows one escaped —1 disclination and two + 1/2
disclinations indicated by the small box and filled small
circles, respectively.
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Figure 8. Director distribution at the x =23 plane from the
simulation performed on a 30 X 30 X 30 lattice with periodic
boundary conditions and k; = 10k, = 10k;. It shows one
escaped + 1 and two — 1/2 disclinations indicated by the
filled small box and unfilled small circles respectively.

Figure 9. Director distribution at z =4 plane from the simu-
lation performed on a 30 X 30 X 30 lattice with periodic
boundary conditions and 10k, =k, =k;. It shows one
escaped + 1, one +1/2 and three —1/2 disclinations
indicated by the filled small box, the filled small circle
and the unfilled small circles, respectively.

constants. For example, with a small splay constant, the
distortions around escaped + 1 disclinations are radial
in nature; with a large splay constant, they are tangential
in nature.

For LCPs, which have a high splay constant and a
low twist constant, predominant twist type disclinations
are expected in the bulk. This is proposed to be a typical
feature of main chain LCPs.

The results reported here are in good agreement with
the results of the vectorial model of Hobdell and Windle
[14], in which the flip vectorial scheme was used. This
confirms that both the flip vectorial model and the
current deterministic tensorial model work well in the
absence of an external field. The current deterministic
model is well suited for investigation of the effect of
shear flow on the microstructure of nematics in general
and LCPs in particular. The results of such studies are
presented separately [22].
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